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Agenda

● Our Team
● History of Airflow at PlayStation
● Migration to Kubernetes
● Development to Production Lifecycle

○ Custom Tooling
○ CI/CD Pipelines

● Containerization
○ Kubernetes Job (K8sOperator)
○ Spark on Kubernetes (SparK8sOperator)

● Questions



Our Team

● Data Strategy and Operations Organization

○ Centralize Data Warehousing across PlayStation

○ Data Engineering / ETL

○ Analytics Engineering

○ Systems and Infrastructure Engineering

○ Data Governance and Data Literacy

○ Data Science

■ Data Science Platform



History of Airflow At PlayStation

● Tech refresh program circa 2017

○ Migration from on premise to AWS Cloud

○ Replacement for existing scheduling solution

○ Jenkins + custom internal Python app

● Cross organization Airflow initiative

○ Internal fork of Airflow

○ Internal Docker image

○ Terraform Airflow deployment



Original EC2 Based QA and Prod Setup



Original EC2 Based Dev Setup



Limitations of Original EC2 Based Setup
● For Data Scientists

○ All ML model training was done on EMR using Spark

○ Workloads all ran on a single instance type

○ Dev environment Airflow shared by all Data Scientists

○ Not everyone was happy to use Cloud9 for dag development

● For Data Science Platform Engineers

○ Painful to manage (forked Airflow, custom internal Docker image, Terraform, 
Cloud9, bad CI/CD, etc.)

○ Didn’t scale well, auto scaling groups needed manual intervention

○ Python package/library management

○ Harder to deploy new tools for Data Scientists to use



Migration to Kubernetes
● For Data Scientists

○ Able to select their own libraries (scikit-learn, xgboost, fbprophet, etc.)

○ Can choose underlying hardware to run workloads on

○ Everyone gets their own Airflow dev environment

○ Data Scientists can choose their own IDE

● For Data Science Platform Engineers

○ Easy deployment, separation of application from infrastructure

○ Scales much better, leave scaling up to Kubernetes

○ Package/library dependency management left to Data Scientists in their 
Dockerfile/requirements/poetry files

○ Easily deploy or update tooling for Data Scientists



Migration to Kubernetes - Phase 1

● Still using Airflow 1.10.10

● Airflow still running on EC2 
instances using CeleryExecutor

● Added a Kubernetes cluster, into 
which we deploy containerized ML 
jobs

● Started utilizing Airflow Kubernetes 
Pod Operator



Migration to Kubernetes - Phase 2

● Upgraded Airflow to 2.0

● Airflow running inside of 
Kubernetes using 
KubernetesExecutor

● Updated deployment of Airflow to 
use Helm



Migration to Kubernetes - Phase 3

● Moved Spark workloads to Spark 
On Kubernetes

● Deploy Spark jobs with in-house 
Spark on Kubernetes Airflow 
Operator

● Removed EFS and opt for git-sync 
sidecar deployments into Airflow



Airflow Dag Deployment in Prod

● Too many apps/processes involved
● Prone to various errors
● Hard to trace back issues
● Slow deployment and code sync
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Considerations for a Kubernetes based Platform

● What additional tooling will we need to put in place to enable Data 
Scientists to do Airflow dag development as well as ML code development 
and testing within a container-native platform?

● What does our CI/CD need to look like to allow our Data Scientists to go 
seamlessly from dev to prod?

● What additional Operators do we need to build to align with our custom 
tools and custom CI/CD processes?



Dev to Prod Lifecycle: Requirements

● Different levels of flexibility for users per environment

○ Very minimal restrictions in dev

○ More control and restrictions into production

● Isolation in dev environment

○ Users provided with sandbox including personal Airflow, personal 
Snowflake DBs and ability to run isolated workloads using on-demand 
resources

● Seamless transition from dev to production

○ Same code that runs/tested in dev should work in production without 
any change (reduces the time to release new changes and delivery 
time)



Dev to Prod: Tools & Processes 

● Built various custom tools to help users interact with the platform 
components and monitor workloads

○ Built REST API and a CLI tool for the Data Scientists to interact with the 
platform

○ Datadog dashboards to track custom metrics and monitor performance

● Built custom CI/CD processes to help promote Airflow dags from dev to 
production



Dev to Prod: Custom Tools 

● Users can manage their own Airflow 
instance

● Users can build Docker images inside 
the platform

● Users can submit a stand-alone or a 
Spark job using a command

● Built REST API and a CLI(called dspml) for the Data Scientists to 
○ Simplify interacting with the platform 

○ Don't need to know about Kubernetes 



Dev to Prod: Custom CI/CD Processes 

● Built custom CI/CD to build Docker images and/or deploy Airflow dags

○ Users can define different dags and in each one they can easily:

■ Build different Docker images for various environments

● e.g., Main branch for Prod

■ Run tests for each dag

■ Run pre-commit tools e.g., 

lint code

○ And deploy the dags



Dev to Prod: Overview

Production

● Run code Lint
● Build Docker 

images
● Run Tests

QA
Code pushed to Git
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User Code Management: Single Repo vs Multi

○ Pros

■ Easier to manage and deploy

■ Easy to do bulk changes

○ Cons (Impacting Users)

■ Commit history is a nightmare

■ Lack of custom control and rules per team/project

■ Teams slowing down other teams

■ What if a project contains other artifacts than just dags?

○ Pros:

■ Cleaner git history related to project

■ Ability to set custom config per repo

○ Cons: 

■ Difficult to manage, deploy and bulk 
changes

 

Single Repository Multi Repository

○ What if we setup the platform to 
mitigate the cons?

■ Better user experience 



User Code Management: Multi Repo Requirements

● Requirements
○ Old single repo should work alongside the newer one-off repos

○ CI/CD pipeline to deploy all the repos to Airflow

○ Ability to do bulk code updates (https://github.com/mateodelnorte/meta can help 
here)

○ Easy way to create a new repo from a template and add it to the mix

○ Ability to keep other code than just Airflow dags code

○ No impact on development environment



● How did we do it

○ Each repo represents a project that contains 
multiple dags

○ A CI/CD pipeline aggregates all repos and 
pushes to one repo to be synced to Airflow

○ Docker images are tagged meaningfully to 
be traced back to the original repo/code    
(e.g., image_tag=sample_repo.dag1.build_folder1)

○ Dags within each repo are tagged to be 
filtered easier in UI(e.g.,dag=DAG(tags=[repo:repo1])

●

User Code Management: Transition to Multi Repo



All our data preprocessing and ML tasks within Data Science used to run on EMR cluster 
(using in-house custom LivyOperator in Airflow)

But:

Containerization: Why?

● EMR has disadvantages

○ Scaling issues

■ EMR scale up/down is slow

■ Less flexibility to choose the underlying nodes and numbers

○ Shared infrastructure to run all workloads

○ Lacks flexibility to add/remove libraries

■ Certain libraries installed on cluster at the beginning / users can’t add new 
libraries / users can’t test and use different versions of a library

○ Difficult to integrate into the rest of DS Platform tools e.g., dspml

● No need to run non-Spark code on EMR cluster or Airflow itself when 
we can run them as a container on Kubernetes 

Non-Spark 
Workload

Spark 
Workload



● Separation of the applications and infrastructure in the platform 

● Provide users the flexibility to choose and experiment with any Python 
libraries

● Allows us to introduce new Python dependency management tools i.e., 
Poetry

● Provide resource isolation for tasks

● Provide a unified way to run various jobs/tasks (Spark, non-Spark Python 
code)

● Running different workloads on different types of instances

● Kubernetes perfectly supports that

Containerization & Benefits



● Extended from the official KubernetesPodOperator

● It is being used to run stand-alone ML tasks on various different nodes

● Any Python libraries can be built into a Docker image and run as part of 
a task in Airflow

● Same code works across different environments without any change 

Containerization(Non-Spark Workload): K8sOperator

Passing run time parameters or Airflow variables that change w.r.t 
to different environments

Adjust resources for the task e.g., cpu, memory, gpu

Choose the underlying node type

Path to code which is similar in different environments



Advantages of running Spark on Kubernetes: 

● Scaling is faster and easier

● No more shared resources

● Users can add/remove new Python libraries by creating new Docker images 

● Integrates nicely into our dspml cli tool to submit Spark jobs outside Airflow

● Better monitoring of jobs resource utilization using custom Datadog dashboards

● Conceptually similar to K8sOperator i.e., easier for the users to follow

● Cost of infrastructure is lower

Containerization(Spark Workload): Spark on Kubernetes



We wrote a new Airflow operator to support running Spark on Kubernetes

● It uses spark-on-k8s-operator behind the scenes to submit a job 
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

● Simplifies the interface to accept different parameters in Python

● Implements the logic to: 

○ Wait for a job after submission

○ Manage error handling

○ Retrieve logs from the driver pod

○ Ability to delete a Spark job

○ It also supports out-of-the-box Kubernetes functionalities such as 
handling volumes, configmaps, secrets, env variables

Containerization(Spark Workload): SparK8sOperator



Example of using the operator

Containerization: SparK8sOperator

Example of configuring Kubernetes resources e.g., 
mount configmap, mount volume, load configmap to 
env, load secret to env 

Path to Spark entry point which does not change 
across environments 

Configuring resources. Dynamic allocation or 
manual assignment

Passing run time parameters or Airflow variables 
that change w.r.t to different environments

Soon will be open-sourced 
and merged into Airflow



Questions?


